

## FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

## **DEPARTMENT OF HEALTH SCIENCES**

| QUALIFICATION: BACHELOR OF MEDICAL LABORATORY SCIENCES/BACHELOR OF HUMAN NUTRITION |                              |  |
|------------------------------------------------------------------------------------|------------------------------|--|
| QUALIFICATION CODE: 08BMLS/08BOHN                                                  | LEVEL: 5                     |  |
| COURSE: BIOCHEMISTRY/INTRODUCTION TO BIOCHEMISTRY                                  | COURSE CODE: BIO521S/IBC521S |  |
| SESSION: NOVEMBER 2022                                                             | PAPER: THEORY                |  |
| DURATION: 3 HOURS                                                                  | MARKS: 120                   |  |

|            | FIRST OPPORTUNITY EXAMINATION QUESTION PAPER |  |
|------------|----------------------------------------------|--|
| EXAMINER   | DR YAPO GUILLAUME ABOUA                      |  |
| MODERATOR: | PROF HABAUKA KWAAMBWA                        |  |

## **INSTRUCTIONS**

- 1. Answer all questions.
- 2. Please write neatly and legibly.
- 3. Do not use the left side margin of the exam answer book.
- 4. No books, notes or other additional aids are allowed.
- 5. Mark all answers clearly with their respective question numbers.

Non-programmable calculator is allowed.

THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page)

| SECTION A   |                                                                                                                                                                              | [20] |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| Que         | stion 1: Multiple Choice                                                                                                                                                     |      |  |
| ;<br>;      | Which of the following domains contains the most primitive bacteria that live in extreme environments?  a. Archaea  b. Bacteria c. Plantae  d. Eukarya                       | (1)  |  |
| i           | The kidneys contribute to acid-base balance by  a. Secretion of ammonia b. Decreased carbon dioxide uptake c. Regulating the pCO <sub>2</sub> d. Increased ketogenesis       | (1)  |  |
| 1.3         | оКа                                                                                                                                                                          |      |  |
| ŀ           | a. Indicates the strength of an acid b. Reflects the pH of the solution c. Is a measure of the buffer capacity d. Is high when the acid is weak                              | (1)  |  |
| a<br>k      | The normal pH of human blood is a. 7.0–7.1 b. 7.25–7.3 c. 7.35–7.4 d. 7.5–7.55                                                                                               | (1)  |  |
| k<br>c      | Which of these amino acids does not have optical isomer(s)  a. Alanine b. Histidine c. Threonine d. Glycine                                                                  | (1)  |  |
| E<br>a<br>k | The following forces may play a role in the formation of quaternary structure EXCEPT  a. Hydrogen bonds b. Disulphide bridges c. Electrostatic interactions d. Peptide bonds | (1)  |  |

|        | In phenylketonuria (PKU), the compound accumulated in the urine is  a. Homocysteine |     |
|--------|-------------------------------------------------------------------------------------|-----|
| b.     |                                                                                     |     |
|        | α-keto acid                                                                         |     |
|        |                                                                                     |     |
| u.     | Phenylpyruvate                                                                      |     |
|        | yroxine is derived from                                                             | (1) |
| a.     | Thiamine                                                                            |     |
| b.     | Threonine                                                                           |     |
| c.     | Tyrosine                                                                            |     |
| d.     | Tryptophan                                                                          |     |
| 1.9 Th | e reactions of the urea cycle occur in                                              | (1) |
|        | Cytosol                                                                             |     |
|        | Mitochondrial matrix                                                                |     |
|        | Lysosome                                                                            |     |
|        | Mitochondrial matrix and the cytosol                                                |     |
| 1.10   | The major source of ammonia in the kidneys is                                       | (1) |
| a.     | Glutamine                                                                           | (-) |
|        | Alanine                                                                             |     |
|        | Creatinine                                                                          |     |
|        | Leucine                                                                             |     |
| u.     | Leucine                                                                             |     |
| 1.11   | Which of these serum enzyme activities rises 4–8 hours after acute                  | (1) |
| my     | ocardial infarction (AMI)?                                                          |     |
| a.     | AST                                                                                 |     |
| b.     | ALT                                                                                 |     |
| c.     | CKMB                                                                                |     |
| d.     | LDH                                                                                 |     |
|        |                                                                                     |     |
| 1.12   | Enzymes increase reaction rates by                                                  | (1) |
| a.     | Altering the change in free energy of the reaction                                  |     |
| b.     | Inhibiting the backward reaction                                                    |     |
| c.     | Enhancing the forward reaction                                                      |     |
| d.     | Decreasing the energy of activation                                                 |     |
| 1.13   | Pancreatic α -amylase                                                               | (1) |
| a.     | Hydrolyses starch completely to glucose                                             |     |
| b.     | Hydrolyses α -dextrins                                                              |     |
| c.     | Hydrolyses α (1 →4) glycosidic bonds                                                |     |
| d.     | Is secreted as a zymogen                                                            |     |
| ٠.     |                                                                                     |     |

| 1.14<br>a.<br>b. |                                                                                          | (1) |
|------------------|------------------------------------------------------------------------------------------|-----|
| c.               | Maltose                                                                                  |     |
| d.               | Inulin                                                                                   |     |
| 1.15             | Fructose is                                                                              | (1) |
| a.               |                                                                                          |     |
|                  | A pentose                                                                                |     |
|                  | A sugar that requires insulin for its absorption                                         |     |
| d.               | Phosphorylated by a phosphatase                                                          |     |
| 1.16             | D-Galactose and D-mannose are a pair of                                                  | (1) |
| a.               | Enantiomers                                                                              |     |
| b.               | Isomers                                                                                  |     |
| c.               | Epimers                                                                                  |     |
| d.               | Anomers                                                                                  |     |
| 1.17             | In $\beta$ -oxidation of fatty acids, which of the following are utilised as co-enzymes? | (1) |
| a.               | FAD and NAD <sup>+</sup>                                                                 |     |
| b.               | FAD H₂ and NADH <sup>+</sup> H <sup>+</sup>                                              |     |
| c.               | NAD <sup>+</sup> and NADP <sup>+</sup>                                                   |     |
| d.               | FAD and FMN                                                                              |     |
| 1.18             | A deficiency of carnitine might interfere with                                           | (1) |
|                  | ß-oxidation                                                                              |     |
|                  | Palmitate synthesis                                                                      |     |
| c.               | Mobilisation of stored triacylglycerol from adipose tissue                               |     |
| d.               | Ketone body formation                                                                    |     |
| 1.19             | Which of the following is an essential fatty acid?                                       | (1) |
| a.               | Linolenic acid                                                                           |     |
| b.               | Linoleic acid                                                                            |     |
| C.               | Arachidonic acid                                                                         |     |
| d.               | All above                                                                                |     |
| 1.20             | Pancreatic lipase converts triacylglycerols into                                         | (1) |
| a.               | 2-Monoacylglycerol                                                                       | , , |
| b.               | 3-Monoacylglycerol                                                                       |     |
| c.               | 1-Monoacylglycerol                                                                       |     |
| d.               | 2. 3-Diacylglycerol                                                                      |     |

Question 2: Fill the blank spaces only by writing down the number and the correct missing expression (1 mark per correct answer).

(20)

| 2.1  | Deamination of an amino acid is coupled with amination ofacid.                                                                                                                                                                                            |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2.2  | To form polypeptides and proteins, amino acids are joined together by bonds.                                                                                                                                                                              |  |  |
| 2.3  | are long, rod-shaped molecules that are insoluble in water and physically tough.                                                                                                                                                                          |  |  |
| 2.4  | The concentration that produces half the maximal velocity (Vmax/2) is known as Michaelis constant.                                                                                                                                                        |  |  |
| 2.5  | Substances that decrease the catalytic activity of enzymes are called                                                                                                                                                                                     |  |  |
| 2.6  | One difference between 'chemical catalysts and enzymes is that enzymes are in the type of reaction to be catalysed and they function within a moderate range of hydrogen ion concentration and temperature along with certain other specified conditions. |  |  |
| 2.7  | Catalytic efficiency of enzymes can be regulated byor inhibition.                                                                                                                                                                                         |  |  |
| 2.8  | Enzymes may be termed as 'molecular switches', which regulate the catalytic activity and transfer of in the biological system.                                                                                                                            |  |  |
| 2.9  | is present in the exoskeleton of invertebrates such as crabs, lobsters and insects.                                                                                                                                                                       |  |  |
| 2.10 | is the most abundant carbohydrate in nature.                                                                                                                                                                                                              |  |  |
| 2.11 | In diabetic patients, the accumulation of in lens of the eye leads to development of cataract.                                                                                                                                                            |  |  |
| 2.12 | Carbohydrates not only serve as major sources of energy but also function asfor the synthesis of lipids, amino acids, glycoproteins and proteoglycans in the body.                                                                                        |  |  |
| 2.13 | are formed by interaction between a monosaccharide or a monosaccharide residue and the hydroxyl group of a second compound that may or may not be a monosaccharide.                                                                                       |  |  |
| 2.14 | is the disease in which lactate, the final product of anaerobic glycolysis, accumulates.                                                                                                                                                                  |  |  |
| 2.15 | is a condition were ketone bodies in blood rise above normal levels.                                                                                                                                                                                      |  |  |
| 2.16 | Phospholipids are major components of cell membranes. They are also part of lipoproteins and bile and act as lung                                                                                                                                         |  |  |
| 2.17 | Biosynthesis of cellular nucleic acids is largely dependent on thesynthesis of nitrogenous bases, namely purines and pyrimidines.                                                                                                                         |  |  |
| 3.1% | Sphingolipids are involved in intracellular communication and as determinants of the ABO blood groups.                                                                                                                                                    |  |  |
| 2.19 | is characterized by an elevated serum urate, which could be due to a renal disorder.                                                                                                                                                                      |  |  |
| 2.20 | Cholesterol molecule hascarbon atoms.                                                                                                                                                                                                                     |  |  |

Question 3: Match the correct expressions or definitions by writing down the number and the letter only (1 mark per correct answer).

- a. Fehling's
- b. Epimers
- c. Cholesterol
- d. Glycogen
- e. Enantiomers
- f. Cellulose
- g. Lectins
- h. Catalytic
- i. Axial
- j. Glycoproteins
- k. Golgi bodies
- I. Amphoteric properties
- m. A buffer
- n. Albinism
- o. Amphipathic
- p. Amphipathic
- q. Phenylalanine hydroxylase
- r. Michaelis-Menten constant
- s. Dissociation constant
- t. Organic solvent
- u. Phospholipid
- v. Prokaryotes
- w. Glycolipid
- x. pH
- y. Isoenzymes
- z. Glycolipid
- aa. apoenzyme

| 3.1 | These are stereoisomers that are mirror images of each other           |
|-----|------------------------------------------------------------------------|
|     | which are bound by a membrane.                                         |
| 3.2 | These monosaccharides differ at a single asymmetric carbon.            |
| 3.3 | Proteins produced by the ribosomes are stored in the form of secretory |
|     | granules in the                                                        |
| 3.4 | This is the most abundant organic molecule in the biosphere.           |
| 3.5 | This is a test solution used to identify reducing and                  |
|     | nonreducing sugars.                                                    |
| 3.6 | The storage form of glucose in animals.                                |
| 3.7 | proteins act as biocatalysts in various metabolic reactions,           |
|     | known as enzymes, e.g. hexokinase and lactate dehydrogenase.           |
| 3.8 | Proteins exhibit Each protein has an isoelectric pH at which           |
|     | there is no net charge on the protein.                                 |
| 3.9 | phenylketonuria is an inborn error of amino acid metabolism.           |
|     | is the deficient enzyme.                                               |

| 3.10 | occurs due to the deficiency of the enzyme tyrosinase.                                 |     |
|------|----------------------------------------------------------------------------------------|-----|
| 3.11 | Blood plays a very important role in the maintenance of body                           |     |
| 2.42 | homeostasis.                                                                           |     |
| 3.12 | is defined as a solution which resists a change in pH when an acid or a base is added. |     |
| 3.13 | pKa is the negative logarithm of the of a weak acid.                                   |     |
| 3.14 | is the characteristic of an enzyme at any given pH and                                 |     |
|      | temperature. It helps to evaluate the affinity of the enzyme towards its               |     |
|      | substrate.                                                                             |     |
| 3.15 | are enzymes that catalyse the same chemical reaction, but                              |     |
|      | differ from each other structurally, electrophoretically and immunologically           |     |
| 3.16 | (e.g LDH).  In addition to phospholipids and glycolipids, is a major type of           |     |
| J.10 | membrane lipid.                                                                        |     |
| 3.17 | : A term applied to molecules that have both hydrophilic and                           |     |
|      | hydrophobic moieties.                                                                  |     |
| 3.18 | A lipid is defined as a compound soluble in                                            |     |
| 3.19 | Lipids which contain carbohydrates are                                                 |     |
| 3.20 | : A type of lipid with two acyl chains, a glycerol backbone, and                       |     |
| 5.20 |                                                                                        |     |
|      | a polar head group.                                                                    |     |
|      |                                                                                        |     |
|      |                                                                                        |     |
| Que  | stion 4: Short Answers                                                                 | (40 |
|      |                                                                                        |     |
| 4.1  | Name the four buffer systems in the body.                                              | (4) |
|      |                                                                                        | /21 |
| 4.2  | What is the difference between holoenzyme, apoenzyme and abzyme?                       | (3) |
| 4.3  | Name the amino acids which are glycogenic and ketogenic.                               | (4) |
| 4.3  | Name the amino acids which are grycogenic and ketogenic.                               |     |
| 4.4  | Name the tests which detect the following amino acids: aromatic,                       | (5) |
|      | tryptophan, arginine, $\alpha$ -amino acids, and tyrosine.                             |     |
| 4 5  | Appropriate following acceptions on most half-alliable in                              |     |
| 4.5  | Answer the following questions on metabolic alkalosis                                  |     |
| а    | . What is metabolic alkalosis?                                                         | (2) |
|      |                                                                                        | (2) |
| b    | . When does it occur?                                                                  | (2) |
| C    | . How will metabolic alkalosis be compensated by the human body?                       | (2) |
|      | The metabolic antalogic be compensated by the name body:                               |     |

| 4.6 | Ansv     | ver the following questions on carbonydrate metabolism                                                                                                                                                                                                                                          |      |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | a.       | Define gluconeogenesis                                                                                                                                                                                                                                                                          | (2)  |
|     | b.       | What is Cori cycle and explain the events that place in that cycle?                                                                                                                                                                                                                             | (4)  |
|     | c.       | What are the irreversible steps of glycolysis and name the enzymes involved in these steps?                                                                                                                                                                                                     | (6)  |
| 4.7 | Answ     | er the following questions on lipids and fatty acids metabolism                                                                                                                                                                                                                                 |      |
|     | a.       | What is the importance of ketone bodies as fuels?                                                                                                                                                                                                                                               | (2)  |
|     | b.       | Which enzyme is absent in adipose tissue?                                                                                                                                                                                                                                                       | (2)  |
|     | c.       | What is the role of bile salts?                                                                                                                                                                                                                                                                 | (2)  |
| Que | estion ! | 5: Calculation                                                                                                                                                                                                                                                                                  | (20) |
| 5.1 | What     | is the pH of the following solutions?                                                                                                                                                                                                                                                           |      |
|     | a.       | 0.35 M hydrochloric acid                                                                                                                                                                                                                                                                        | (2)  |
|     | b.       | 0.35 M acetic acid (pKa = 4.76)                                                                                                                                                                                                                                                                 | (3)  |
| 5.2 | A we     | eak acid, HA, has a total concentration of 0.20M and is ionized (dissociated) %                                                                                                                                                                                                                 | (5)  |
| 5.3 | [HI      | olution is labeled "0.450 M NaN <sub>3</sub> . Calculate the following [N <sub>3</sub> <sup>1-</sup> ], [OH <sup>1-</sup> ], N <sub>3</sub> ], and the pH of the solution? Express your concentrations to three nificant figures. Note that $K_a$ for HN <sub>3</sub> = 1.9x10 <sup>-05</sup> . | (5)  |
| 5.4 | HC:      | at is the pH of a buffer that is 0.12 $M$ in lactic acid [CH <sub>3</sub> CH(OH)COOH, or $_3$ H <sub>5</sub> O <sub>3</sub> ] and 0.10 $M$ in sodium lactate [CH <sub>3</sub> CH(OH)COONa or NaC <sub>3</sub> H <sub>5</sub> O <sub>3</sub> ]? tic acid, $K_a = 1.4 \times 10^{-4}$             | (5)  |

## THE END